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A.1 State Space Regression Model

This section shows a framework allowing us to deal with a state space models as a linear regression
model with time-varying parameters. Such a framework provides an alternative of the Kalman
smoother. The alternative estimator takes a crucial role in this article. The idea is so simple
that we reduce a state space model to more general regression models, usually called random
parameter regression models. Our framework covers wide range of state space models, which
have random parameters with occasional jumps.

We first reexamine the structure of the state space model as a linear regression model, equa-
tion (10), which we call state space regression model.

When we stand on the regression theory, γ = Wβ + v in equation (10) illustrates how the
parameters are randomized, given some prior vector γ. To simplify the discussion, we temporally
suppose that the matrix W is non-singular and that we have the following representation of β:

β = W−1γ −W−1v. (A.1)

We regard the first term of RHS in equation (A.1) as the expected values of the randomized
parameters and the second one the random effects of the disturbance terms. Notice that the
vital supposition in our discussion is not the invertibility of W but the existence of such a
decomposition of randomized parameters.

Considering the case where some parameters might not be random or the one where the
disturbance terms affect the parameters in degenerated ways, we generalize equation (9) in the
following simple form:

β = β̄ +Dw, (A.2)
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where D is a matrix with the size of N × ℓ, ℓ ≤ N,N := nT and

w
iid∼ WS(0,Σw),

where w might have smaller dimension than that of v and WS(0,Σw) is any distribution de-
pending only on mean 0 and variance Σw such as the normal distribution. We will use this
notation to represent a distribution with wider sense assumptions.

We assumes that the rank of D is ℓ > 0 and that β̄ is known. Note that when rank D = ℓ = 0,
equation (A.2) has no parameter to estimate. Notice that the matrix D reflects the time-varying
structure in place of W .

This class of random parameter regression models covers a conventional state space model:

yt = Xtβt + ut, ut
iid∼ WS(0, Rt)

βt+1 = Φt+1,tβt +Gtwt, wt
iid∼ WS(0,Σw), (A.3)

where the matrix Gt in equation (A.3) has the size m× ℓ (ℓ ≤ m) and its rank is ℓ. It is natural
to assume that Σw = I because this assumption implies cov(Gtwt) = GtG

′
t and thus Gt has

all information about the covariance matrix of the state equation. We make additional remark
that the class of the random parameter regression model defined above covers quite wide range
of linear models such as linear models for panel data.

A.2 Random Parameter Regression

In this section, we demonstrate that OLS and GLS assure the MMSLE estimator in the random
parameter regression model defined above. To simplify our notations and discussion, we present
the random parameter regression model as follows. Let M denote the number of unknown
parameters and N the dimension of observation vector y is N.

y = Xβ + ε, (A.4)

and

β̄ = β −Dw, (A.5)

where D is a matrix known with the size of M × ℓ, ℓ ≤ M,

ε
iid∼ WS(0,Σε) and w

iid∼ WS(0,Σw),

and β̄ is known.
We suppose some regularity conditions for the least square estimation.

Assumption 1

rank D = ℓ > 0,

and there is a generalized inverse D− of D such that

D−D = I.
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We stack equations (A.4) and (A.5) multiplied by D−.

Y = Xβ + ξ, (A.6)

for [
D−β̄
y

]
=

[
D−

X

]
β +

[
−w
ε

]
.

Equation (A.6) can be written as

(Y − Xβ) ∼ WS(0,Σξ), (A.7)

where

Σξ =

(
Σw O
O Σε

)
.

Table A.1 summarizes the dimensions of the vectors and matrices.

(Figure A.1 here)

The above framework enables us to deal with the random parameter regression theory as we do
with the familiar regression theory. In the usual regression theory, an important estimator is the
weighted least squares estimator (WLSE) of β.

Definition 1 (WLSE (weighted least squares estimator)) b is the WLSE of β for equa-
tion (A.7) if and only if

(Y − X β̂)′Σ−1
ξ (Y − X β̂),

is minimized when b = β̂, that is,

b = argmin{(Y − X β̂)′Σ−1
ξ (Y − X β̂) : β̂ ∈ RM}

where Y and X are given and Σξ is known.

Note that WLSE b does not always hold unbiasedness and consistency when Y and any column
of X are statistically correlated.

A.3 The Relation to the Moving-Window Method

To highlight the difference between our method and the moving-window method (for example,
Kim et al. (2011) and Lim et al. (2013)), let us rewrite the estimated p-th coefficient of the
time-varying AR(q) model at time-t is as follows:

α̂p,t =

T∑
τ=1

ωp,τ,txτ + ωp,0,t, (p = 1, · · · , q);

where ωp,τ,t’s are weights. Our method allows us to readily compute the weights by the following
matrices: By a (1 + qT )× (1 + qT ) permutation matrix P , we have a modified coefficient vector
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b︸︷︷︸
(1+qT )×1

≡ t(α0 | α1,1 α1,2 · · · α1,T | α2,1 · · · α2,T | · · · · · · · · · | αq,1 · · · αq,T )

= Pβ.

Then, defining a (1 + qT )× (T + qT ) matrix Ω such that:

Ω︸︷︷︸
(1+qT )×(T+qT )

= P︸︷︷︸
(1+qT )×(1+qT )

Q︸︷︷︸
(1+qT )×(T+qT )

=


rx rγ
Ω1,x Ω1,γ

Ω2,x Ω2,γ
...

...
Ωq,x Ωq,γ

 ,

we arrive at the least squares estimator for b:

b̂ = Ω

 x
· · ·
γ

 .

Thus, ωp,τ,t is the (t, τ)-th element of Ωp,x; and ωp,0,t is a linear combination of t-th row of
Ωp,γ .

It is important to point out that in the case of the moving-window method, the band-width
(size) of the window for t is fixed and smaller than the whole sample size, T . In contrast,
our method is to find the orthogonal projection onto the space spanned by all the information,
(x1, . . . , xT ), as shown in equation (10). Because of this, in fact, our estimator is the minimized
mean squared error estimator (MMSE).

(Figure A.1 here)

Figure A.1 exhibits estimated weights ωτ,t following equation (10). The smoothed estimate for
α1942, for example, requires approximately 25 years of observations xt, from 1930 to 1954, with
variant weights on each observation. Another way to interpret this finding is that the band-width
for α1942 is about 25 years. Since these weights are the result of the least squares estimation, our
implicitly-defined band-width can be seen as the “optimally-chosen band-width,” in the sense of
the MMSE, as opposed to an arbitrarily selected band-width in the moving-window method.
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Figure A.1: Optimal Weights for the Smoother
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Table A.1: Dimensions of Random Parameter Regression Model

vector matrix
y N X (N + ℓ)×M
β M Σw ℓ× ℓ
ε N Σε N ×N
w ℓ Σξ (N + ℓ)× (N + ℓ)
Y N + ℓ D M × ℓ
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