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A.1 Parameter Constancy Test for Time-Invariant VAR Model

There are some parameter constancy tests, for example Andrews (1993) and Nyblom (1989).
Hansen (1992) develops a parameter constancy test for linear and non-linear models. The test
is made under the null and alternative hypotheses: (H0) the parameters are constant over time
and (H1) they follow a martingale process. In practice, we reformulate Equation (1) to extend
Hansen’s test for a VAR(p) model.

Define the (k × T ) data matrix as

Y := (y1,y2, · · · ,yT ),

where T is the number of time series observations. To reformulate the VAR(p) model with a
intercept term into a regression formula, we introduce the following auxiliary vector and matrix:

Zt :=


1
yt
...

yt−p

 ,

and

Z := (Z0, Z1, · · · , ZT−1) .
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Note that Z0 is regarded as a prior of estimation. Defining the (k × kT ) disturbance matrix as

U := (u1,u2, · · · ,uT ),

we obtain a matrix form of Equation (1):

Y = BZ + U,

where a k × (1 + kp) matrix B is [ν, A1, · · · , Ap]. Using the vec operator, which transforms a
(k × T ) matrix into an (kT ) vector by stacking the columns, we have the following regression
form of Equation (1):

vec(Y ) = (Z ′ ⊗ Ik)vec(B) + vec(U), (A.1)

where ⊗ is the Kronecker product and Ik denotes k identity matrix. In case k = 2 and p = 1,
Equation (A.1) is specifically exhibited as

y11
y21
y12
y22
...

y1T
y2T


=



1 0 y10 0 y20 0
0 1 0 y10 0 y20
1 0 y11 0 y21 0
0 1 0 y11 0 y21
...

...
...

...
...

...
1 0 y1,T−1 0 y2,T−1 0
0 1 0 y1,T−1 0 y2,T−1





ν1
ν2
α11

α21

α12

α22

+



u11
u21
u12
u22
...

u1T
yuT


.

In order to extend the procedure of Hansen (1992), we rewrite Equation (A.1) as

y = Xβ + u,

where y = vec(Y ), X = Z ′ ⊗ Ik and u = vec(U). Given y, we obtain the OLS estimate
β̂ = (X ′X)−1X ′y and the estimate of the covariance matrix Σ̂u as UU ′/T or UU ′/(T − kp− 1)
(see Lütkepohl (2005, ch.3) for details).

Furthermore, to extend Hansen’s (1992) procedure to our system, let us organize the above
equation as follows:

yt = Xtβ + ut, t = 1, 2, · · · , T. (A.2)

For simplicity, we consider an OLS estimation of equation (A.2) with the i.i.d. assumption,
E[utu

′
t] = Σu, t = 1, 2, · · · . The OLS estimates β̂ as well as Σ̂u should hold the following

equations.

0 =

T∑
τ=1

X ′
τeτ

and

0 =
T∑

τ=1

(vech(eτe
′
τ )− vech(Σ̂u)),
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where et = yt − Xtβ̂ and the vech operator is closely related to vec, which only stacks the
elements on and below the main diagonal of a symmetric matrix. To construct Hansen’s (1992)
test statistic for a simultaneous linear equation system, define (k(1 + kp) + k(k + 1)/2) vector,

fτ (β̂, Σ̂u) =

[
vec(X ′

τeτ )

vech(eτe
′
τ )− vech(Σ̂u)

]
, τ = 1, 2, · · · , T.

Let fiτ denotes i-th component of fτ (β̂, Σ̂u), Ss =
∑s

τ=1 fτ and Sis =
∑s

τ=1 fiτ for i =

1, 2, · · · , k(1 + kp) + k(k + 1)/2, s = 1, 2, · · · , T . Note that we abbreviate β̂, Σ̂u when there
is no confusion. Hansen’s (1992) individual statistics of parameter constancy test are

Li =
1

TVi

T∑
τ=1

S2
is, i = 1, 2, · · · , (k(1 + kp) + k(k + 1)/2),

where Vi =
∑T

τ=1 f
2
iτ . His joint statistic is defined:

Lc =
1

T

T∑
τ=1

S′
τV

−1Sτ , (A.3)

where V =
∑T

τ=1 fτf
′
τ . These test statistics follow singular distributions represented by the

Brownian motions and bridges.
Hansen (1990) provides the asymptotic critical values for degrees of freedom k = 1, . . . , 20.

However, we often use models with quite many parameters such as multiple time series models
with many lags. Then, we need the asymptotic critical values for higher degrees of freedom.
Thus, we calculate the asymptotic critical values for degrees of freedom k = 1, . . . , 100 using
20,000 draws from distribution (A.3). Note that we set 1,000 intervals in which to split [0, 1] for
calculating the Brownian bridges. The asymptotic critical values for Hansen’s (1990) parameter
constancy test are shown in the following table.

(Table A.2 around here)

A.2 Regressor of State Space Regression Models

This section shows the reader a significant property of the method that we present for dealing with
a TV-VAR(p) model in Section 3. The method enables us to handle the model as a conventional
econometric model by identifying the corresponding state space model with a linear regression
model. Recall that the observation equation and the state one appeared in the state space model
in Section 3: Equations (3.3) and (3.4).

We prove that estimating method of the smoother of a state space model guarantees the
exact estimate whatever data is applied. Mathematically we assert that the regressor matrix of
our underlying linear system has full rank. This implies that our estimation never suffers from
multicolinearity and that our model is always identifiable in the sense of Rothenberg (1971).
The following results do not depend on whatever time-varying model is assumed; they cover our
TV-VAR model, a typical state space model.

The model consists of two equations as follows:

yt = Xtβt + ut, ut
iid∼ WS(0,Σu), t = 1, 2, · · · , T, (A.4)
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and

βt+1 = Btβt + vt, vt
iid∼ WS(0,Σv), t = 1, 2, · · · , T, (A.5)

where WS(0,Σu) and WS(0,Σv) are any distributions depending only on their means and vari-
ances such as the normal distributions. We will use this notation to represent a distribution with
wider sense assumptions. Note that yt’s are k−dimensional vectors and βt’s are m−dimensional
vectors as parameters. Xt and Bt are k ×m and m×m matrices respectively. Notice that two
disturbances, ut and vt, follow iid normal distributions with zero means and covariance matrices,
Σu and Σv, respectively.

By transforming Equation (A.5) to the following form, we can regard the state equation as
a linear regression model.

0 = Btβt − Iβt+1 + vt, vt
iid∼ WS(0,Σv), t = 1, 2, · · · , T. (A.6)

Combining Equations (A.4) with (A.6) into the following linear system, we can employ conven-
tional econometric techniques to obtain the Kalman smoother.

ŷ =

[
y

γ

]
=

[
X

W

]
β +

[
u

v

]
where

y =


y1

y2
...
yT

 , γ =


−B0β0

0
...
0

 , u =


u1

u2
...

uT

 , v =


v1

v2
...
vT

 ,

and

X =


X1 O

X2

. . .
O XT

 , W =


−I O
B1 −I

. . . . . .
O BT−1 −I

 .

Our main theorem of this appendix is as follows:

Theorem 1 The regressor matrix has full rank. That is

rank
[

X

W

]
= mT.

Proof: Let X̂ denote the regressor matrix. It is of size (k+m)T ×mT . Thus, rankX̂ ≤ mT .
Clearly, each ranks of the two submatrices, W and X, are fewer than or equal to mT . Formally,

rankX ≤ mT,

and

rankW ≤ mT.
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On the other hand, rankW = rankW ′. Since W ′ has the following reduced row echelon form:
−I B1 O

−I
. . .
. . . BT−1

O −I

 ,

its rank is clearly mT . Finally, mT ≤ rankX̂ ≤ mT . This implies rankX̂ = mT . □
The reader should notice that the rank of X̂ depends neither on the data matrices, X1, X2, · · · , XT ,

nor on the state transition matrices, B1, B2, · · · , BT−1. This signifies that classical least square
techniques such as OLS or GLS are always applicable to estimate linear time-varying models
that can be represented as state space models.

In this paper, our TV-VAR(1) model with constant drift. Such a model has two types of
parameters to be estimated: time-varying and time-invariant. In the rest of this appendix, we
confirm that the above discussion holds even if linear time-varying model such as our model has
time-invariant parameters. In the case, we should modify Equation (A.4) as follows:

yt = Ztα+Xtβt + ut, ut
iid∼ WS(0,Σu), t = 1, 2, · · · , T,

where α is a ℓ−vector of time-invariant parameters and Zt is a k×ℓ matrix of data. The regressor
matrix turns to be[

Z X

O W

]
,

where the above O is mT × ℓ matrix of zero and

Z =


Z1

Z2
...

ZT

 .

The following theorem holds.

Theorem 2

rank
[
Z X

O W

]
= rankZ +mT.

Proof: Let X̃ denote the regressor matrix in the case. According to Theorem 1, rankX̂ is mT .
Thus, using the reduced row echelon form of W , say, W 0, we can transform X̂ to the following
form: [

O

W 0

]
.

Then there are two non-singular matrices, P of size ((k + m)T ) × ((k + m)T ) and Q of size
(ℓ+mT )× (ℓ+mT ), such that

PX̃Q =

[
Z O

O W 0

]
.
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Considering rankZ = mT and

rank
[
Z

O

]
= rankZ,

we have rankX̃ = rankZ +mT . □
Note that we can deal with the case of the TV-VAR(1) with time-invariant drift term such

as our model in this paper. As appeared in section 3.2, one regards Z as
I
I
...
I

 ,

where each I denotes k × k identity matrix. Then, rankZ = k. Considering the number of
parameters to be estimated is k + k2T and m = k2, our TV-VAR model has no problem of
identification.

A.3 Non-Bayesian Time-Varying VAR Model

If the parameter constancy test exhibits instability of VAR coefficients over time, we choose an
alternative model that holds the alternative hypothesis on the parameter dynamics and then
estimate the model. Focusing our attention on linkage of stock markets which is supposed to
vary over time, we suppose that only VAR coefficients vary over time while any components of
the intercept term are invariant. In what follows, we present how to estimate the non-Bayesian
TV-VAR model. Our approach has several good points in comparison with the Bayesian one
(see, for example, Cogley and Sargent (2001, 2005) and Primiceri (2005)).

We start by setting VAR coefficients varying over time for an ordinary VAR(p) model as
follows:

yt = ν +A1,tyt−1 + · · ·+Ap,tyt−p + ut, t = 1, 2, · · · , T.

This equation can be represented as follows:

yt = ν +AtZt−1 + ut, t = 1, 2, · · · , T, (A.7)

where

At = [A1,t · · · Ap,t] and Zt−1 =

 yt−1
...
yt−p

 .

Equation (A.7) corresponds to an observation equation when we regard our TV-VAR model as a
state space model. As to the corresponding state equation, let us assume the following random
walk process:

Ai,t = Ai,t−1 + Vi,t, i = 1, 2, · · · , p and t = 1, 2, · · · , T,

where each Vi,t is a k × k matrix of random variables, say, following normal distributions. Let
Vt denote = [V1,t · · · Vp,t] or equivalently

vec(At) = vec(At−1) + vt, t = 1, 2, · · · , T, (A.8)
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where each vt is a k2p-vector of random variables, vec(Vt) = vec([V1,t · · · Vp,t]).
In place of the Kalman smoothing, we estimate ν, A1, · · · , AT by considering together Equa-

tions (A.7) and (A.8) as a simultaneous system of linear equations. Equation (A.7) turns out to
be

y =


y1

y2
...
yT

 =


Ik Z ′

0 ⊗ Ik O
Ik Z ′

1 ⊗ Ik
...

. . .
Ik O Z ′

T−1 ⊗ Ik




ν
vec(A1)
vec(A2)

...
vec(AT )

+


u1

u2
...

uT

 .

This is equivalent to the following equation.

y = [1⊗ Ik diag(Z ′
0 ⊗ Ik, Z

′
1 ⊗ Ik, · · · , Z ′

T−1 ⊗ Ik, )]

vec([ν, A1, A2, · · · , AT−1]) + vec(U), (A.9)

where 1 = (1 1 · · · 1)′ ∈ RT . On the other hand, the state equation can be represented as:


−vec(A0)

0
...
0

 =


0 −Ik2p
0 Ik2p −Ik2p
...

. . . . . .
0 Ik2p −Ik2p




ν
vec(A1)
vec(A2)

...
vec(AT )

+


v1

v2
...
vT

 ,

where vec(A0) is a prior vector of VAR coefficients, of whichever level is set, do not influence
our results except starting burn-in periods.

Considering the following linear system, we estimate the coefficients of our time-varying VAR
by using OLS.[

y
γ

]
=

[
D
W

]
β + ε,

where D =
[
1⊗ Ik | diag(Z ′

0 ⊗ Ik, Z
′
1 ⊗ Ik, · · · , Z ′

T−1 ⊗ Ik)
]
,

γ =


−vec(A0)

0
...
0

 ,

W =


0 −Ik2p
0 Ik2p −Ik2p
...

. . . . . .
0 Ik2p −Ik2p

 ,

β = vec([ν, vec(A1), · · · , vec(AT )])

and

ε =

[
u
v

]
.
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The OLS estimate is:

β̂ =

([
D
W

]′ [
D
W

])−1 [
D
W

]′ [
y
γ

]
.

As Ito et al. (2016) show, the OLS estimate, β̂, of the above linear model provides the same
estimation, Ât, (t = 1, 2, · · · , T ) as those of the Kalman smoothing for the original state space
model. Not using iterative procedure of the traditional Kalman smoothing, our approach al-
lows us to use familiar econometric techniques such as heteroskedastic autoeregressive consistent
(HAC) estimations (see, for example, Newey and West (1987, 1994)). Such a HAC estimate
enables us to obtain the covariance estimate of Σvec(At), (t = 1, 2, · · · , T ) from the covariance es-
timate, Σβ. It is possible to construct the confidence intervals of the VAR coefficients for period
by period by using the squared diagonal components of Σβ̂. Furthermore, as shown in Techni-
cal Appendix A.2, our approach never confronts with the problem of identifiability unlike usual
econometric analyses using least square techniques. In comparison with Bayesian approaches,
our method is so simple that we are free from sometimes agonizing choice of prior distribution
of parameters (for a typical example of the Bayesian TV-VAR model approach, see Cogley and
Sargent (2001, 2005) and Primiceri (2005)).

A.4 Monte Carlo Method for TV-VAR Estimations

This subsection provides our method of statistical inferences on the TV-VAR estimates and their
derived statistics, the degree of market efficiency. The idea is so simple that the Monte Carlo
technique brings about their confidence bands by under the hypothesis that any markets are
efficient at any periods.

The practical procedure is as follows. We first estimate the means and standard deviations
of time series of stock market returns over the periods, µ̂ = (µ̂1 · · · µ̂k)

′ and σ̂ = (σ̂1 · · · σ̂k)′
using the original data. Then, we derive N time series samples with length T by a Monte Carlo
method from an i.i.d. normal distribution with the following means and variance structure:

y
(n)
t = u

(n)
t , u

(n)
t

iid∼ WS


µ̂1

...
µ̂k

 ,

σ̂2
1 · · · 0
...

. . .
...

0 · · · σ̂2
k


 , (n = 1, · · · , N, t = 1, · · · , T ).

Note that we consdier as the efficient market hypothesis in the semi-strong sense as the null of
our infernece. Thus, we suppose that the above uncorrelated disturbance vector u

(n)
t , follows

the above normal distribution. In other words, they are generated by a VAR process with
time-invariant zero VAR coefficients.

Secondly we estimate the TV-VAR coefficients and residuals for our system of Equations
(A.8) and (A.9) in section 3.2 from the above N artificial samples:

SM := {(Â(1)
1,t , · · · , Â

(1)
p,t , û

(1)
t , v̂

(1)
t ), · · · , (Â(N)

1,t , · · · , Â(N)
p,t , û

(N)
t , v̂

(N)
t )}.

We derive N Monte Carlo samples of TV-VAR(p) model from SM ; it is natural to consider a
distribution of the statistics with respect to each Monte Carlo samples. A set of N samples
is available through the way shown in section 3.3 using the set of samples, SM . Finally, we
construct confidence bands from the N Monte Carlo samples.1

1Our Monte Carlo method is applicable to an AR(p) model for univarite data.
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A.5 Bootstrap Method for TV-VAR Estimations

We can adopt another simulation method, bootstrap one, to attain the same goal as the Monte
Carlo method does. The idea itself is very similar to that of the Monte Carlo technique in the
previous section; it only differs by resampling process from the Monte Carlo technique.

The practical procedure is as follows. First we identify the stock returns data {y1, · · · ,yT }
with the residuals D0 = {û1, · · · , ûT } of VAR estimation under the hypothesis of all zero co-
efficients. Then we extract N samples {ỹ(i)

1 , · · · , ỹ(i)
T }, i = 1, 2, · · · , N with replace from D0

regarding it as an empirical distribution of the residuals.
Secondly we estimate the TV-VAR coefficients and residuals for our system of Equations

(A.8) and (A.9) in section 3.2 from the above N artificial samples:

Sb := {(Ã(1)
1,t , · · · , Ã

(1)
p,t , ũ

(1)
t , ṽ

(1)
t ), · · · , (Ã(N)

1,t , · · · , Ã(N)
p,t , ũ

(N)
t , ṽ

(N)
t )}.

We derive N bootstrap samples of TV-VAR(p) model from Sb; it is natural to consider a distri-
bution of the statistics with respect to each bootstrap samples. A set of N samples is available
through the way shown in section 3.3 using the set of samples, Sb. Finally, we construct confi-
dence bands from the N bootstrap samples in the same way as the Monte Carlo technique.2
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Table A.1: Time Invariant AR Estimations

Constant Rt−1 Rt−2 R̄2 LC

RUS
t

0.0043 0.1975 − 0.0356 28.3517[0.0018] [0.0528]

RCA
t

0.0041 0.2361 − 0.0521 41.0607[0.0020] [0.0558]

RGB
t

0.0047 0.3172 −0.1222 0.0886 39.3477[0.0021] [0.0628] [0.0526]

RJP
t

0.0027 0.2738 − 0.0711 37.5094[0.0021] [0.0453]

RDE
t

0.0030 0.2512 − 0.0596 27.2011[0.0022] [0.0454]

RFR
t

0.0038 0.2299 − 0.0492 47.9710[0.0023] [0.0442]

RIT
t

0.0026 0.2119 − 0.0412 44.5418[0.0027] [0.0496]
Note: As for table 2.
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Table A.2: Asymptotic Critical Values for Hansen’s (1992) Parameter Constancy Tests

DF(k) Significance Level
1% 2.5% 5% 7.5% 10% 20%

1 0.74 0.58 0.46 0.39 0.35 0.24
2 1.07 0.89 0.75 0.67 0.61 0.47
3 1.36 1.16 1.00 0.91 0.84 0.68
4 1.62 1.41 1.24 1.14 1.06 0.88
5 1.87 1.64 1.46 1.36 1.28 1.08
6 2.12 1.88 1.69 1.57 1.49 1.27
7 2.35 2.10 1.90 1.78 1.69 1.46
8 2.58 2.32 2.11 1.99 1.89 1.65
9 2.81 2.54 2.33 2.19 2.10 1.84
10 3.04 2.76 2.53 2.40 2.29 2.03
11 3.26 2.97 2.74 2.60 2.49 2.22
12 3.47 3.18 2.94 2.79 2.69 2.40
13 3.69 3.39 3.14 2.99 2.88 2.59
14 3.90 3.59 3.34 3.19 3.07 2.77
15 4.12 3.80 3.54 3.39 3.27 2.96
16 4.33 4.00 3.74 3.58 3.46 3.14
17 4.54 4.21 3.94 3.77 3.65 3.32
18 4.74 4.41 4.13 3.96 3.84 3.50
19 4.95 4.61 4.33 4.16 4.03 3.69
20 5.16 4.81 4.52 4.35 4.22 3.87
21 5.36 5.01 4.72 4.54 4.41 4.05
22 5.57 5.21 4.91 4.73 4.59 4.23
23 5.77 5.40 5.11 4.92 4.78 4.41
24 5.98 5.60 5.30 5.11 4.97 4.59
25 6.17 5.80 5.49 5.30 5.15 4.77
26 6.38 5.99 5.68 5.49 5.34 4.95
27 6.58 6.19 5.87 5.67 5.52 5.12
28 6.77 6.38 6.06 5.86 5.71 5.30
29 6.98 6.58 6.25 6.05 5.90 5.48
30 7.18 6.77 6.44 6.23 6.08 5.66
31 7.38 6.97 6.63 6.42 6.26 5.84
32 7.56 7.15 6.82 6.61 6.45 6.02
33 7.76 7.35 7.01 6.79 6.63 6.20
34 7.97 7.55 7.19 6.98 6.81 6.37
35 8.17 7.74 7.38 7.16 7.00 6.55
36 8.36 7.93 7.57 7.35 7.18 6.73
37 8.55 8.12 7.76 7.53 7.36 6.90
38 8.74 8.31 7.94 7.71 7.54 7.08
39 8.94 8.50 8.13 7.90 7.72 7.26
40 9.14 8.69 8.32 8.08 7.91 7.44
41 9.34 8.88 8.50 8.27 8.09 7.61
42 9.52 9.06 8.69 8.45 8.27 7.79
43 9.72 9.25 8.87 8.63 8.45 7.96
44 9.91 9.44 9.06 8.82 8.63 8.14
45 10.11 9.64 9.25 9.00 8.81 8.32
46 10.29 9.82 9.43 9.18 8.99 8.49
47 10.48 10.01 9.61 9.37 9.18 8.67
48 10.68 10.20 9.80 9.55 9.36 8.85
49 10.87 10.39 9.98 9.73 9.54 9.02
50 11.06 10.57 10.17 9.91 9.72 9.20
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Table A.2: (Continued)

DF(k) Significance Level
1% 2.5% 5% 7.5% 10% 20%

51 11.25 10.76 10.35 10.09 9.90 9.37
52 11.45 10.95 10.54 10.27 10.08 9.55
53 11.63 11.13 10.72 10.45 10.25 9.72
54 11.83 11.32 10.90 10.64 10.44 9.90
55 12.01 11.51 11.09 10.82 10.62 10.07
56 12.21 11.70 11.27 11.00 10.80 10.25
57 12.40 11.88 11.45 11.18 10.98 10.42
58 12.59 12.07 11.64 11.36 11.16 10.60
59 12.78 12.25 11.82 11.54 11.33 10.77
60 12.96 12.43 12.00 11.72 11.51 10.95
61 13.16 12.63 12.18 11.90 11.69 11.12
62 13.34 12.81 12.37 12.08 11.87 11.30
63 13.53 13.00 12.55 12.27 12.05 11.47
64 13.72 13.18 12.73 12.45 12.23 11.65
65 13.91 13.36 12.91 12.62 12.41 11.82
66 14.09 13.55 13.10 12.81 12.59 12.00
67 14.29 13.74 13.28 12.99 12.76 12.17
68 14.47 13.92 13.46 13.16 12.94 12.35
69 14.65 14.10 13.64 13.34 13.12 12.52
70 14.85 14.29 13.82 13.52 13.30 12.69
71 15.04 14.47 14.00 13.71 13.48 12.87
72 15.22 14.65 14.18 13.88 13.66 13.04
73 15.41 14.84 14.36 14.06 13.83 13.21
74 15.59 15.02 14.54 14.24 14.01 13.39
75 15.77 15.20 14.72 14.42 14.19 13.56
76 15.97 15.39 14.91 14.60 14.37 13.74
77 16.15 15.57 15.09 14.78 14.54 13.91
78 16.34 15.75 15.27 14.96 14.72 14.08
79 16.52 15.93 15.44 15.13 14.90 14.26
80 16.71 16.12 15.63 15.31 15.08 14.43
81 16.90 16.31 15.81 15.49 15.26 14.60
82 17.08 16.49 15.99 15.67 15.43 14.78
83 17.27 16.67 16.17 15.85 15.61 14.95
84 17.46 16.85 16.35 16.03 15.79 15.13
85 17.64 17.03 16.53 16.21 15.96 15.30
86 17.82 17.22 16.71 16.39 16.14 15.48
87 18.01 17.40 16.89 16.56 16.32 15.65
88 18.20 17.58 17.07 16.75 16.50 15.82
89 18.39 17.77 17.25 16.92 16.67 15.99
90 18.57 17.95 17.43 17.10 16.85 16.17
91 18.75 18.13 17.61 17.27 17.02 16.34
92 18.93 18.31 17.79 17.45 17.20 16.51
93 19.12 18.50 17.97 17.63 17.38 16.69
94 19.30 18.67 18.14 17.81 17.55 16.86
95 19.48 18.85 18.33 17.99 17.73 17.03
96 19.67 19.04 18.50 18.17 17.91 17.21
97 19.86 19.22 18.69 18.34 18.08 17.38
98 20.04 19.40 18.86 18.52 18.26 17.55
99 20.22 19.58 19.04 18.70 18.44 17.73
100 20.41 19.76 19.22 18.87 18.61 17.90

Notes:

(1) Critical values were calculated from 20000 draws under the same set-
ting as Hansen (1992).

(2) R version 3.4.3 was used to compute the critical values.
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Figure A.1: Time-Varying Degree of Market Efficiency: North America
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Notes:

(1) The dashed red lines represent the 99% confidence bands of the time-varying
spectral norm in case of efficient market.

(2) We run 5000 times bootstrap sampling to calculate the confidence bands.

(3) R version 3.1.0 was used to compute the estimates.
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Figure A.2: Time-Varying Degree of Market Efficiency: U.S. and U.K.
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Note: As for figure A.1.

15



Figure A.3: Time-Varying Degree of Market Efficiency: U.S., U.K. and Japan
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Note: As for figure A.1.
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Figure A.4: Time-Varying Degree of Market Efficiency: European Countries
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Note: As for figure A.1.
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Figure A.5: Time-Varying Degree of Market Efficiency: G7 Countries
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Note: As for figure A.1.
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Figure A.6: Time-Varying Degree of Market Efficiency: Individual Countries
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(a) U.S.
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(b) Canada

Time

D
eg

re
e 

of
 M

ar
ke

t E
ffi

ci
en

cy

1980 1990 2000 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

D
eg

re
e 

of
 M

ar
ke

t E
ffi

ci
en

cy

1980 1990 2000 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

D
eg

re
e 

of
 M

ar
ke

t E
ffi

ci
en

cy

1980 1990 2000 2010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) U.K.
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(d) Japan
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(e) Germany
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(f) France
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(g) Italy

Notes:

(1) The dashed red lines represent the 99% confidence bands of the time-varying spectral
norm in case of efficient market.

(2) We run 5000 times bootstrap sampling to calculate the confidence bands.

(3) The shade areas represent recessions reported by the NBER business cycle dates for the
U.S. and the Economic Cycle Research Institute business cycle peak and trough dates
for the other countries.

(4) R version 3.4.3 was used to compute the estimates.
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